Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

Identifieur interne : 002004 ( Main/Exploration ); précédent : 002003; suivant : 002005

The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

Auteurs : Joan Laur [Canada] ; Uwe G. Hacke [Canada]

Source :

RBID : pubmed:25406088

Descripteurs français

English descriptors

Abstract

Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

DOI: 10.1371/journal.pone.0111751
PubMed: 25406088
PubMed Central: PMC4236056


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.</title>
<author>
<name sortKey="Laur, Joan" sort="Laur, Joan" uniqKey="Laur J" first="Joan" last="Laur">Joan Laur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hacke, Uwe G" sort="Hacke, Uwe G" uniqKey="Hacke U" first="Uwe G" last="Hacke">Uwe G. Hacke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25406088</idno>
<idno type="pmid">25406088</idno>
<idno type="doi">10.1371/journal.pone.0111751</idno>
<idno type="pmc">PMC4236056</idno>
<idno type="wicri:Area/Main/Corpus">001F18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F18</idno>
<idno type="wicri:Area/Main/Curation">001F18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F18</idno>
<idno type="wicri:Area/Main/Exploration">001F18</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.</title>
<author>
<name sortKey="Laur, Joan" sort="Laur, Joan" uniqKey="Laur J" first="Joan" last="Laur">Joan Laur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hacke, Uwe G" sort="Hacke, Uwe G" uniqKey="Hacke U" first="Uwe G" last="Hacke">Uwe G. Hacke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aquaporins (genetics)</term>
<term>Aquaporins (metabolism)</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
<term>Protein Isoforms (genetics)</term>
<term>Protein Isoforms (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aquaporines (génétique)</term>
<term>Aquaporines (métabolisme)</term>
<term>Eau (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Isoformes de protéines (génétique)</term>
<term>Isoformes de protéines (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Protéines membranaires (génétique)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aquaporins</term>
<term>Membrane Proteins</term>
<term>Plant Proteins</term>
<term>Protein Isoforms</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aquaporins</term>
<term>Membrane Proteins</term>
<term>Plant Proteins</term>
<term>Protein Isoforms</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aquaporines</term>
<term>Isoformes de protéines</term>
<term>Protéines membranaires</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aquaporines</term>
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Isoformes de protéines</term>
<term>Populus</term>
<term>Protéines membranaires</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25406088</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>e111751</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0111751</ELocationID>
<Abstract>
<AbstractText>Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Laur</LastName>
<ForeName>Joan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hacke</LastName>
<ForeName>Uwe G</ForeName>
<Initials>UG</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020346">Aquaporins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C077491">tonoplast intrinsic protein, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020346" MajorTopicYN="N">Aquaporins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25406088</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0111751</ArticleId>
<ArticleId IdType="pii">PONE-D-14-26370</ArticleId>
<ArticleId IdType="pmc">PMC4236056</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Rep. 2008 Sep;27(9):1541-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18560835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr;164(4):1600-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24449709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Mar;37(3):617-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23937187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):713-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Jan;49(1):30-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18037610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Mar 17;5(3):e9731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20305810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Dec;140(4):321-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20681973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2013 Jul 15;170(11):1028-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23537705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Nov 20;9:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19930558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Oct;59(3):469-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16235111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Jun;19(7):453-459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Apr;36(4):828-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23046275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Apr;8(4):587-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8624437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jul 15;4:255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23874349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Jun;31(6):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21724585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(4):766-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Dec 13;4:507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24379822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr;164(4):1772-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):445-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2014 Apr;239(4):887-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24402563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Aug;34(8):1318-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21477124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):2101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Sep;124(4):495-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 May;35(5):857-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22070647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Jun;41(6):719-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10945341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e55506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23393587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Aug;117(4):1153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9701571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jul;67(1):72-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21401747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2002 Feb;25(2):251-263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Aug 1;33(8):1285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20302602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2012 Jul;99(7):1249-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22763351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1418-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20034965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(2):643-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22016424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Nov;88(3):574-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Apr;35(4):760-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21999411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1698-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Aug;6(2):187-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7920711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Sep;46(9):1568-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16033806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(11):2971-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Nov 01;9:465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(2):388-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24702644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2005 Dec;92(12):1970-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 May;64(8):2283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23599275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Dec;106(4):1325-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7846153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Apr;180(4):604-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Oct;54(391):2323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14504300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Aug;226(3):671-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17447082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr;164(4):1731-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24521876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002;3(1):RESEARCH0001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11806824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2012;(70). pii: 4179. doi: 10.3791/4179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23299126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 May;123(1):111-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806230</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Laur, Joan" sort="Laur, Joan" uniqKey="Laur J" first="Joan" last="Laur">Joan Laur</name>
</noRegion>
<name sortKey="Hacke, Uwe G" sort="Hacke, Uwe G" uniqKey="Hacke U" first="Uwe G" last="Hacke">Uwe G. Hacke</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002004 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002004 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25406088
   |texte=   The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25406088" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020